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High Resolution
lmaging

A picture iIs worth a thousand words



What i1s Acoustic Microscope?

Apparatus for non destructive investigation of
Internal microstructure of materials of various
nhature using a high frequency ultrasonic beam
emitting into a specimen via an acoustic lens, and
detecting acoustic characteristics of the specimen
by analysis of a reflected and/or transmitted
ultrasonic wave propagating within the specimen.



ABC of Acoustic Microscopy



Acoustic waves

Parameters:

e Frequency band

e Amplitude

e Sound velocity

e Acoustic Impedance
e Attenuation
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Through-transmission method
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Reflection method
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Scanning acoustic microscopy (SAM)

C. Quate and L. Lam, Stanford University, 1973
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Scanning Acoustical Microscope

Reflection Type
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Types of Acoustic Images

A-scan:

A plot of signal (amplitude and phase against time
that can be related to distance in a specimen).

B-scan:

A plot of signal amplitude displaying a cross section
of a specimen perpendicular to the upper surface.

C-scan:

A plot of signal amplitude displaying a cross section
of a specimen parallel to the upper surface.
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B-scan obtaining
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Inspection of rivets quality

Optical image after
Cross section
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Sector scanners
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Direct Volume Rendering

Data acquisition
=

Combining multiple
slices into 3D volume
matrix
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Excitation signals

Continuous wave

Parameters: frequency w,, amplitude 4,, phase ¢

A, sin(ax)
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Toneburst

Parameters:
frequency w,,
samplitude 4,,,

ephase o,

eduration T,

srepetition frequency 2
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Toneburst
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Short pulse

ANA
Excitation: one short pulse. \/
Parameters completely determined
by transducer properties
Sharp front

charging  capacitor

U resistor ¥ Short rectangular
— |l pulse
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spike




Short pulse
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Pulse compression
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Transducers




Transducer Design

e Natural wavelength is twice
the thickness of piezoceramic
wafer

e Optimal impedance matching
IS achieved by a matching Backing
layer with thickness V4
wavelength

e Commonly used materials
Include lithium niobate, barium
or zirconate titanate, etc.
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Longitudinal Wave Probe
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Loaded transducer

FREQUENCY SPECTRUM

Media 1 Media 2

Well matched
transducer
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Piezoelectric materials

Crystals: Quartz (Si0O,) 32° X-cut £, = 0.093

Lithium niobate (LINbDO;) 36° Y-cut k£, =0.49; 163°Y-cut k£, =0.3

Zn0O Z-cut k, = 0.28; X-cut k, = 0.32
Ceramics: BaTiO, &, =0.28-0.42
Lead metaniobate (Pb[Zr, Ti, ]O; 0<x<1) K-83 £k =0.51

Lead zirconate titanate (Pb[Zr,Ti, ]O, 0<x<1) PZT-4 k =0.51

Polymers: Polyvinylidene fluoride (PVDF) k,=0.1~0.2

k., — piezoelectric coupling constant



Piezocomposite materials
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Directivity function
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Immersion ultrasonic testing

O O O }) UFH
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Microdot transducer

e Automated scanning
------ On-line thickness gaging
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Acoustical transducers
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High frequency acoustical lenses
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Focusing of acoustic beams

Focusing lens

0, Curved piezoelectric
element

“Lens maker equation”
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Aberration

Spherical aberration Material-induced aberration
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Diffraction-limited spot size
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Beam profile
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Focal spot size
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Angular spectrum
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Surface and Sub-Surface
Resolution of Scanning Acoustic
Microscope



Resolution: Definition (l)

The resolution of the scanning acoustic
microscope is defined to be the minimum
distance between two points closely situated
on an acoustic image plane (either a surface
or interior plane) formed by the scanning
acoustic microscope, wherein the minimum
distance is defined by Rayleigh’s criterion.



Resolution Charts
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A vertical cross-sectional view of a resolution chart
to measure subsurface resolution, wherein d is the
thickness of the coating indicating the penetration
depth of SAM, and | is the internal lateral resolution
of the SAM.



Surface Lateral Resolution Chart with

SAM
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Surface resolutions measured from acoustic images are as follows:

Ar=1.8um Ar=1.4pm Ar=0.7uym



Focusing the Transducer

Too close

2

At the focus

4

Too far

2

Courtesy Sonix Inc.



Types of Scanning Acoustic
Microscopes



Characteristics of SAM

e Apparatus for evaluating both surface and
Inside of the specimen.

e High Resolution
e High Contrast
e Quantitative Data Acquisition




ELSAM (SAM 2000)

100 - 2000 MHz




Olympus Mechanical Scanning Acoustic
Reflection Microscope

100 - 2000 MHz




AMS-50S1 (Honda Electronics)

50 - 400 MHz




Tessonics Comprehensive Acoustic
Microscope

5 -400 MHz




SONIX (Sonoscan) scanning system
10 - 250 MHz
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Various Ultrasonic Imaging Systems
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Quantitative Methods



Formation of output signal in a reflection
SAM. z- the focal length of a lens. In case: a) 4z = 0
— output signal is formed by the integrity of all the
refracted rays, b) 4z >0 — only paraxial beams
contribute to output signal, ¢) 4z < 0 — the output
signal emerges as the superposition of the signal
produced by a mirro-reflection of paraxial rays and
of the signal due to the leaky surface Rayleigh wave
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V(z) method

: Mechanical
[/ @ motion
0 Co
\ AZ = <2 (1-cos8,)

2f

, Ca=Co/ [1-(1- 52

V(z) curve for a glass specimen; f =300 MHz, T =70°C, A,=5.2 um.



Specimen: Fused Quartz

V(Z) & Cu rve Coupling medium: Distilled Water
Temperature: 22.3°C (change less than 0.1°C).
Frequency: 400MHz,
Az = (1 AW 9 Aperture angle: 120°, and
( —COS R) Working distance: 310 pum.
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Vertical crack detection method

Scanning direction
Acoustic Lens —

Disconected
boundary

0

7

Sample —»

_



Ultrasonic Micro-Spectrometer
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V(X) methOd V(x) waveform

y

o Mechanical motion

At




V(x,t) method

P(t) \ 91- i(Pl/ V(Xayat)

From ray model: C; the velocity of the leaky surface wave :
Cr=Ad / At,

Ad - 1s travel distance F,F, of the leaky wave along the surface

At - 1s the corresponding time of flight.



V(X%,t) method — Experimental Setup

A

X stage
Vi

Pulser Motion
controller

—
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Receiver | o! ADC ™ PC

PVDF line-focus lens-less transducers

Focal distance R1=R2=9 mm, length 12 mm ﬁentra}l freq_t:(encyl 12 Mll_EIBZO .
Aperture angels: egative spike pulse - , 30 ns

transmitting transducer - 50°+40°; ig%eg’if b‘?‘”dW'dl’Fh 1-30 M;OZO f/INHR >40 dB
receiving transducer - 45°+35° Its; sampling rate Z



V(%,t) method — Experimental Results

Material Measured leaky | Known value,
wave velocity, [1]
m/s
Fused quartz 3398 3410 (R)
Steel 3027 2996 (R)
Aluminum 2941 2906 (R)
Copper 2184 2171 (R)
Plexiglas 2683 2750 (L)
Polystyrene 2358 2400 (L)

V(x,t) waveform measured for polystyrene;
L - leaky longitudinal wave



Through Transmission Mode

[RpEp——

Specimen

Incident angle 6 < 0_
The angular resolution of the methods are determined by the

spatial resolution of the receiver and the distance between
scan plan and focus



A(z2) rlnethod
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A(z) Method of Quantitative Measurements
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Application of A(z) Method for
Polymer Studies

Substance PE PS
density p, g/cm’ 0.920 1.050
a.
sound velocity ¢, 1.95 2.40
km/s
PS
- \ } e velocity ratio c/e, 1304 1.605
b impedance p ¢, 1.794  2.520
/d
impedance ratio p, 1.20 1.69
pE[  PS \PEffd e /pe
attenuation:
m, dB/cm-MHz 5.25 2.16
b, dB/cm -1.72 -0.27

y, el (f=450 MHz) 272 11



Anisotropy
Measurements



Elastic Anisotropy

Application Areas
—NDE
—Biomedical
—Seismic and Geophysical
Materials
—Crystals
—Stressed Materials
—QOriented cracks, pores, or inclusions
—Textured metals with oriented grains
—Thinly layered laminates
—Lamellar or fibrous composites
Characterization Techniques
—Bulk methods (through transmission, point source)
—Surface waves, reflection coefficients (line focused system)
—Resonance, diffraction and other techniques



Effects of Anisotropy: Obstacles
and Opportunities

The anisotropy of a material gives rise to three major effects. These
are a consequence of the fact that, in anisotropic materials, the
energy does not travel perpendicular to the wave front (energy
velocity and phase velocity are in different directions). The link
between them is established in theory through the slowness (inverse
phase velocity) surface.

energy
veloci

phase
velocity

self focussing reflection &

beam steering (defocussing) critical angles



Cylindrical Lens for Anisotropic
Measurements

(@)

Transducer

Cylindrical
lens surface

Plane acoustic
wavefronts

(b)  Cylindrical

Chalcogenide-glass-film ZnO-film transducer

concave surface quarter-wavelength (1.73 mm square)
matching layer

Focused acoustic

wavefronts

1.0 mm radius

i

8 mm¢®

y
Z I
X

Sapphire rod

Line focused
acoustic beam

Specimen

(a) Wavefronts in a line-focus-beam microscope; (b) structure of a

line-focus-beam lens with dimensions for 225 MHz (Kushibiki and Chubachi
1985). '



Example: Austenitic Weld Metal

ke cS
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1

(left) Slowness surfaces for a
transversely isotropic austenitic
stainless steel weld metal. (below) A
theoretical comparison of
(quasi)longitudinal beam profiles for
iIsotropic parent and anisotropic weld
metals.
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on-Linear Imagin




Non-Linear Acoustical Methods

Some special cases of defects, invisible by usual acoustic methods

,,\/-"\

Thin cracks or other Glue layers
discontinuity

Small-grain structure Inclusions of materials
(grain dimension less with similar acoustical

then wavelength) parameters



focussing system

N

acoustic beam

_ /
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Non-Linear Methods

Blend area _
New Paint (often rough and Qd paint
\ dull looking) /
I

.//
FAimer
coat —

)

/
¥ Repaired body panel

+«— &

Cear coat
covers the
entire panel
and is usually
buffed to a
glossy shine,
which makes
repairs nearly
invisble




Non-Linear Imaging Methods

L
Receiver ADC -
Filter 50 MHz Pulser
/ —
lens 25MHz
Mechanical DU
scanning
: system

coupling
liquid

— Sample

Samples: two steel 2-mm
sheets, joined by resistive
weld and polished to
exclude surface effects




Non-Linear Imaging Methods
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