IEEE UFFC International Ultrasonic Symposium July 21, 2013, Prague, Czech Republic Short Courses

Quantitative Acoustic Microscope-Measurement, Analysis, Biological and Material Science Applications

2D

Instructors:

Naohiro Hozumi Kazuto Kobayashi Sachiko Yoshida Roman Gr. Maev Fedar Seviaryn

Part 1

Acoustic Microscopy: Measurements, Analysis, Applications

Prof. Roman Gr. Maev Dr. Fedar Seviaryn

Institute for Diagnostic Imaging Research Windsor, Ontario, Canada

Contents

- Basics of acoustic microscopy
- Transducers
- Contrast and resolution
- Types of acoustical microscopes
- Quantitative methods
- Anisotropy measurements
- Non-linear imaging
- From Desktop to Hand-Held: Examples of various advanced approaches & applications

High Resolution Imaging

A picture is worth a thousand words

What is Acoustic Microscope?

Apparatus for non destructive investigation of internal microstructure of materials of various nature using a high frequency ultrasonic beam emitting into a specimen via an acoustic lens, and detecting acoustic characteristics of the specimen by analysis of a reflected and/or transmitted ultrasonic wave propagating within the specimen.

ABC of Acoustic Microscopy

Acoustic waves

Parameters:

- Frequency band
- Amplitude
- Sound velocity
- Acoustic impedance
- Attenuation

Through-transmission method

Reflection method

Acoustic Microscopy – Measurements, Analysis, Applications July 21, 2013 UFFC Short courses Prague

9

Scanning acoustic microscopy (SAM)

C. Quate and L. Lam, Stanford University, 1973

Scanning Acoustical Microscope Reflection Type

Types of Acoustic Images

A-scan:

A plot of signal (amplitude and phase against time that can be related to distance in a specimen).

B-scan:

A plot of signal amplitude displaying a cross section of a specimen perpendicular to the upper surface.

C-scan:

A plot of signal amplitude displaying a cross section of a specimen parallel to the upper surface.

Various Imaging Modes

Sector scanners

Direct Volume Rendering

18

Toneburst

Parameters:

20

Short pulse

Excitation: one short pulse. Parameters completely determined by transducer properties

Acoustic Microscopy – Measurements, Analysis, Applications July 21, 2013 UFFC Short courses Prague

1

Sharp front

Short pulse

Pulse compression

Transducers

Transducer Design

- Natural wavelength is twice the thickness of piezoceramic wafer
- Optimal impedance matching is achieved by a matching
 layer with thickness ¼ wavelength
- Commonly used materials include lithium niobate, barium or zirconate titanate, etc.

Longitudinal Wave Probe

Piezoelectric materials

Crystals: Quartz (SiO₂) 32° X-cut $k_t = 0.093$ Lithium niobate (LiNbO₃) 36° Y-cut $k_t = 0.49$; 163° Y-cut $k_t = 0.3$

ZnO Z-cut $k_t = 0.28$; X-cut $k_t = 0.32$

Ceramics: $BaTiO_3$ $k_t = 0.28 - 0.42$ Lead metaniobate (Pb[ZrxTi_1-x]O_3 0<x<1)</th>K-83 $k_t = 0.51$ Lead zirconate titanate (Pb[ZrxTi_1-x]O_3 0<x<1)</th>PZT-4 $k_t = 0.51$ Polymers:Polyvinylidene fluoride (PVDF) $k_t = 0.1 \sim 0.2$

 k_t – piezoelectric coupling constant

Piezocomposite materials

0-3 composite

0.1

0

2-2 composite

1-3 composite

Ceramic Volume Fraction

Immersion ultrasonic testing

Automated scanning On-line thickness gaging High speed flaw detection Time-of-flight and amplitude based imaging Through transmission testing Material analysis and velocity measurements

Focusing of acoustic beams

Focusing lens

Aberration

Spherical aberration

Material-induced aberration

Surface and Sub-Surface Resolution of Scanning Acoustic Microscope

Resolution: Definition (I)

The resolution of the scanning acoustic microscope is defined to be the minimum distance between two points closely situated on an acoustic image plane (either a surface or interior plane) formed by the scanning acoustic microscope, wherein the minimum distance is defined by Rayleigh's criterion.

Resolution Charts

Resolution Chart (Optical Image) to measure subsurface resolution

A vertical cross-sectional view of a resolution chart to measure subsurface resolution, wherein d is the thickness of the coating indicating the penetration depth of SAM, and l is the internal lateral resolution of the SAM.

SAM

Surface resolutions measured from acoustic images are as follows:

Δr=1.8μm

Δr=1.4μm

Δr=0.7μm

Focusing the Transducer

Types of Scanning Acoustic Microscopes

Characteristics of SAM

- Apparatus for evaluating both <u>surface</u> and <u>inside</u> of the specimen.
- High Resolution
- High Contrast
- Quantitative Data Acquisition

ELSAM (SAM 2000)

100 - 2000 MHz

Olympus Mechanical Scanning Acoustic Reflection Microscope

100 - 2000 MHz

AMS-50SI (Honda Electronics)

50 - 400 MHz

Tessonics Comprehensive Acoustic Microscope

5 - 400 MHz

SONIX (Sonoscan) scanning system

10 - 250 MHz

Various Ultrasonic Imaging Systems

Quantitative Methods

V(z) Method

Formation of output signal in a reflection SAM. z- the focal length of a lens. In case: a) $\Delta z = 0$ - output signal is formed by the integrity of all the refracted rays, b) $\Delta z > 0$ - only paraxial beams contribute to output signal, c) $\Delta z < 0$ - the output signal emerges as the superposition of the signal produced by a mirro-reflection of paraxial rays and of the signal due to the leaky surface Rayleigh wave

Acoustic Microscopy – Measurements, Analysis, Applications July 21, 2013 UFFC Short courses Prague

V(z) - Curve

$$\Delta z = \frac{\lambda_W}{2(1 - \cos \theta_R)}$$

Specimen: Fused Quartz Coupling medium: Distilled Water Temperature: 22.3°C (change less than 0.1°C). Frequency: 400MHz, Aperture angle: 120°, and Working distance: 310 μm.

Vertical crack detection method

Spherical-Planar-Pair lenses (SSP); Incident angle $\theta_1 < \theta < \theta_2$

Acoustic Microscopy – Measurements, Analysis, Applications July 21, 2013 UFFC Short courses Prague

58

From ray model: C_R the velocity of the leaky surface wave : $C_R = \Delta d / \Delta t$,

 Δd - is travel distance F_1F_2 of the leaky wave along the surface Δt - is the corresponding time of flight.

PVDF line-focus lens-less transducers Focal distance R1=R2=9 mm, length 12 mm Aperture angels:

transmitting transducer - 50°±40°; receiving transducer - 45°±35° Central frequency 12 MHz Negative spike pulse - 150 V, 30 ns Receiver bandwidth 1-30 MHz, SNR >40 dB ADC 8 bits; sampling rate 200 MHz

V(x,t) method – Experimental Results

Material	Measured leaky wave velocity,	Known value, [1]
	m/s	
Fused quartz	3398	3410 (R)
Steel	3027	2996 (R)
Aluminum	2941	2906 (R)
Copper	2184	2171 (R)
Plexiglas	2683	2750 (L)
Polystyrene	2358	2400 (L)

V(x,t) waveform measured for polystyrene; L - leaky longitudinal wave

Incident angle $\theta < \theta_m$

The angular resolution of the methods are determined by the spatial resolution of the receiver and the distance between scan plan and focus

Acoustic Microscopy – Measurements, Analysis, Applications July 21, 2013 UFFC Short courses Prague

63

A(z) Method of Quantitative Measurements

Application of A(z) Method for Polymer Studies

Substance	PE	PS
density ρ , g/cm ³	0.920	1.050
sound velocity $c_{\rm L}^{}$, km/s	1.95	2.40
velocity ratio $c/c_{\rm L}$	1.304	1.605
impedance $\rho c_{\rm L}$	1.794	2.520
impedance ratio ρ_1 $c_1/\rho c$	1.20	1.69
attenuation:		
m, dB/cm·MHz	5.25	2.16
b, dB/cm	-1.72	-0.27
γ , cm ⁻¹ (f = 450 MHz)	272	112

Anisotropy Measurements

Elastic Anisotropy

Application Areas

- -NDE
- -Biomedical
- -Seismic and Geophysical
- **Materials**
 - -Crystals
 - -Stressed Materials
 - -Oriented cracks, pores, or inclusions
 - -Textured metals with oriented grains
 - -Thinly layered laminates
 - -Lamellar or fibrous composites

Characterization Techniques

- -Bulk methods (through transmission, point source)
- -Surface waves, reflection coefficients (line focused system)
- -Resonance, diffraction and other techniques

Effects of Anisotropy: Obstacles and Opportunities

The anisotropy of a material gives rise to three major effects. These are a consequence of the fact that, in anisotropic materials, the energy does not travel perpendicular to the wave front (energy velocity and phase velocity are in different directions). The link between them is established in theory through the slowness (inverse phase velocity) surface.

Cylindrical Lens for Anisotropic Measurements

(a) Wavefronts in a line-focus-beam microscope; (b) structure of a line-focus-beam lens with dimensions for 225 MHz (Kushibiki and Chubachi 1985).

Example: Austenitic Weld Metal

Non-Linear Imaging

Non-Linear Acoustical Methods

Some special cases of defects, invisible by usual acoustic methods

Thin cracks or other discontinuity

Small-grain structure (grain dimension less then wavelength)

Glue layers

Inclusions of materials with similar acoustical parameters
Non-Linear Methods

Non-Linear I maging Methods

Samples: two steel 2-mm sheets, joined by resistive weld and polished to exclude surface effects

NL

Non-Linear I maging Methods

