Impact damage in fiber-reinforced composites

SAM imaging of the Impact

3D Reconstruction

- Original data slices
- 50 MHz
- 40 x 40 mm scan field
- 267 slices
- 267 A-scans in each slice
- 2250 samples per A-scan

3D Reconstruction

- Band pass filtering
- Envelope filter (using Hilbert transform)
- Envelope conditioning (proprietary Tessonics algorithm)

3D Reconstruction

Adhesive bonding of the fiberreinforced composites

Samples description

Synthetic fibers reinforces plastic (CFRP) composites plates jointed by adhesive strips

Nominal Adhesive approximate width 10, 35, and 50 mm

Composite Adhesive Joint Analysis, Scanning Acoustic Microscopy

Composite/adhesive interface

Below interface

Lower adhesive/composite interface

Ultrasonic imaging with phased array

Arrays: 2.25 and 5 MHz Number of elements 64 Pitch 0.8 mm Width app. 50 mm

Manual translation

Electronic scanning

Composite Adhesive Joint Analysis, Phased array

Complex shape of the samples

Hew generation of adhesive testers

- Phased array 64 elements
- Frequency 5 MHz
- MEMS and optical positioning

The Air-Coupled Acoustic Imaging Technique

The air-coupled imaging technique

Pros and cons

- High acoustical mismatch
- High attenuation of ultrasound in air
- Absence of contaminations and damages
- Fast scan of the object

Technology employed

- NCA1000-2E
- Techno Stepper DaVinci
- Three pairs of Ultran transducers

f = 221 kHz Bandwidth = 80 kHz Active Diameter = 25 mm

f = 485 kHz Bandwidth = 148 kHz Active Diameter = 12.5 mm

f = 910 kHz Bandwidth = 290 kHz Active Diameter = 12.5 mm

Air-coupled Ultrasound

- At the UoW, researches have been carried out on wooden panel paintings
- The lateral resolution of the used planar transducers goes from 15 mm up to 3.5 mm
- By using focused transducers, we can achieve a lateral resolution of few tenths of mm

Air-coupled system in through-transmission configuration

The layered structure is formed by:

- Wood support
- Animal Glue
- Ground (gesso + animal glue)
- Design layers: underdrawing, imprimatur, underpaintings, paint, glazing, varnish, retouchings

Through Transmission configuration f = 200 kHz

Single Sided configuration f = 200 kHz

Through Transmission configuration f = 1000 kHz

Single Sided configuration f = 500 kHz

Studying simulated rectangular delamination between the wood support and the ground:

C-scans in various non contact ultrasonic layouts (*through-transmission* and *single-sided configurations*)

Four hundred years old painting (Private collection)

Characteristics:

- Mahogany support;
- Dimensions: 187 x 263 mm²
- Really variable thickness (*Fig.b*) from 2.6 mm (right) up to 6.7 mm (left)
- Suspect damaged area in the lower right region (*Fig.c*)
- Recently restored region around the forehead of the subject

Single-sided scan using the 200 kHz transducers

Optical image with checked region highlighted

Scan in single-sided configuration. **Confirmed the results** obtained in throughtransmission configuration. The visible damaged area is effectively a defective region, but the real extension of the detachment is wider than what was visible to naked eyes

Binary image

Optical image with checked region highlighted

Scan in single-sided configuration. Binary images with highlighted the delaminated regions (White -> sound zones; black -> detached zones) The scanned region is that one inside the rectangle

High-resolution 3D ultrasonic fingerprint imaging

Acoustic image of skin structure

Imaging with acoustic microscope

Hardware:

- Scanning acoustic microscope "Tessonics AM-1103" (Tessonics Corp., Canada),
- Short-pulse reflection mode,
- Narrow-aperture focused ultrasonic transducer with a frequency of 50 MHz (Panametrix), spatial resolution of about 50 μ m (when focused under the plate).

Experimental results

Acoustical and optical images of the same fingerprint area

Experimental results

Fast multi-lens cylindrical scanner

Prototype design of a fast-scanning miulti-lens fingerprint imaging system:

A finger is inserted into a hollow cylinder of the scanner and pressed onto the concave surface of the cylinder, and a system of rotating focused ultrasonic transducers scans over the cylinder

The first prototype (2011) was presented at the Biometrics Conference in Washington DC, in January 2011

Our first prototype: It was developed procedures and algorithms

- Simplified mechanical design
- Assembled from marketavailable parts

Newest design

- Commercial production
- Affordable price

- Compact and robust
- Direct rotor drive
- Higher accuracy

Thank you for your attention

